MUTUAL EXISTENCE OF PRODUCT INTEGRALS IN NORMED RINGS

RV

ION C. HELTON(1)

ABSTRACT. Definitions and integrals are of the subdivision-refinement type, and functions are from $R \times R$ to N, where R denotes the set of real numbers and N denotes a ring which has a multiplicative identity element represented by 1 and a norm $|\cdot|$ with respect to which N is complete and |1|=1. If G is a function from $R \times R$ to N, then $G \in OM^*$ on [a, b] only if (i) $_{X}\Pi^{Y}(1+G)$ exists for $a \le x < y \le b$ and (ii) if $\epsilon > 0$, then there exists a subdivision D of [a, b] such that, if $\{x_i\}_{i=0}^n$ is a refinement of D and $0 \le p < q \le n$, then

 $\left| \prod_{x_p}^{x_q} (1+G) - \prod_{i=p+1}^q (1+G_i) \right| < \epsilon;$

and $G \in OM^{\circ}$ on [a, b] only if (i) ${}_{x}\Pi^{y}(1+G)$ exists for $a \le x < y \le b$ and (ii) the integral $\int_{a}^{b} |1+G-\Pi(1+G)|$ exists and is zero. Further, $G \in OP^{\circ}$ on [a, b] only if there exist a-subdivision D of [a, b] and a number B such that, if $\{x_{i}\}_{i=0}^{n}$ is a refinement of D and $0 , then <math>|\Pi_{i=p}^{q}(1+G_{i})| < B$.

If F and G are functions from $R \times R$ to N, $F \in OP^{\circ}$ on [a, b], each of $\lim_{x,y\to p^+} F(x,y)$ and $\lim_{x,y\to p^-} F(x,y)$ exists and is zero for $p \in [a, b]$, each of $\lim_{x\to p^+} F(p,x)$, $\lim_{x\to p^-} F(x,p)$, $\lim_{x\to p^+} G(p,x)$ and $\lim_{x\to p^-} G(x,p)$ exists for $p \in [a, b]$, and G has bounded variation on [a, b], then any two of the following statements imply the other:

(1) $F + G \in OM^*$ on [a, b], (2) $F \in OM^*$ on [a, b], and (3) $G \in OM^*$ on [a, b].

In addition, with the same restrictions on F and G, any two of the following statements imply the other:

(1) $F + G \in OM^{\circ}$ on [a, b], (2) $F \in OM^{\circ}$ on [a, b], and (3) $G \in OM^{\circ}$ on [a, b].

The results in this paper generalize a theorem contained in a previous paper by the author [Proc. Amer. Math. Soc. 42 (1974), 96-103]. Additional background on product integration can be obtained from a paper by B. W. Helton [Pacific J. Math. 16 (1966), 297-322].

Presented to the Society, January 23, 1975; received by the editors October 4, 1974. AMS (MOS) subject classifications (1970). Primary 28 A25, 26 A39.

Key words and phrases. Sum integral, product integral, subdivision-refinement integral, existence, interval function, normed complete ring.

⁽¹⁾ This research was supported in part by a grant from Arizona State University.

Copyright © 1975, American Mathematical Society

All definitions are of the subdivision-refinement type, and functions are from $R \times R$ to N, where R denotes the set of real numbers and N denotes a ring which has a multiplicative identity element represented by 1 and a norm $|\cdot|$ with respect to which N is complete and |1| = 1. Functions are assumed to be defined only for elements $\{x, y\}$ of $R \times R$ such that x < y.

If G is a function from $R \times R$ to N, then $\int_a^b G$ exists only if there exists an element L of N such that, if $\epsilon > 0$, then there exists a subdivision D of [a, b] such that, if $\{x_i\}_{i=0}^n$ is a refinement of D, then $|L - \sum_{i=1}^n G_i| < \epsilon$, where $G_i = G(x_{i-1}, x_i)$. Similarly, ${}_a\Pi^b(1+G)$ exists only if there exists an element L of N such that, if $\epsilon > 0$, then there exists a subdivision D of [a, b] such that, if $\{x_i\}_{i=0}^n$ is a refinement of D, then $|L - \Pi_{i=1}^n(1+G_i)| < \epsilon$.

The statements that G is bounded on [a, b], $G \in OP^{\circ}$ on [a, b] and $G \in OB^{\circ}$ on [a, b] mean there exist a subdivision D of [a, b] and a number B such that, if $\{x_i\}_{i=0}^n$ is a refinement of D, then

- (1) $|G_i| < B$ for $1 \le i \le n$,
- (2) $|\prod_{i=p}^{q} (1+G_i)| < B$ for $1 \le p \le q \le n$, and
- (3) $\sum_{i=1}^{n} |G_i| < B$, respectively.

Let $G(p, p^+)$, $G(p^+, p^+)$, $G(p^-, p)$ and $G(p^-, p^-)$ represent $\lim_{x\to p^+}G(p, x)$, $\lim_{x\to p^+}G(x, y)$, $\lim_{x\to p^-}G(x, p)$ and $\lim_{x,y\to p^-}G(x, y)$, respectively. Now, $G\in S_1$ on [a, b] only if $G(p^+, p^+)$ exists and is zero for $a\le p< b$ and $G(p^-, p^-)$ exists and is zero for $a< p\le b$; and $G\in S_2$ on [a, b] only if $G(p, p^+)$ exists for $a\le p< b$ and $G(p^-, p)$ exists for $a\le p\le b$. Further, $G\in OL^\circ$ on [a, b] only if $G(p, p^+)$ and $G(p^+, p^+)$ exist for $a\le p< b$ and $G(p^-, p)$ and $G(p^-, p^-)$ exist for $a< p\le b$.

For additional background on product integration, the reader is referred to papers by P. R. Masani [10], J. S. MacNerney [9], B. W. Helton [2] and the author [7].

Suppose F and G are functions on $R \times R$. If $\int_a^b F$ exists and $\int_a^b G$ exists, then it is easily shown that $\int_a^b (F+G)$ exists. However, if $_x\Pi^y(1+F)$ and $_x\Pi^y(1+G)$ exist for $a \le x < y \le b$, it does not necessarily follow that $_x\Pi^y(1+F+G)$ exists for $a \le x < y \le b$. The purpose of this paper is to investigate the existence of such product integrals. In particular, with suitable restrictions on the functions involved, we interrelate the existence of $_x\Pi^y(1+F)$, $_x\Pi^y(1+G)$ and $_x\Pi^y(1+F+G)$. However, before stating our results, we need several additional definitions.

First, $G \in OA^{\circ}$ on [a, b] only if $\int_{a}^{b} G$ exists and $\int_{a}^{b} |G - \int G| = 0$. Second, $G \in OM^{\circ}$ on [a, b] only if ${}_{x}\Pi^{y}(1 + G)$ exists for $a \le x < y \le b$ and $\int_{a}^{b} |1 + G - \Pi(1 + G)| = 0$. Third, $G \in OM^{*}$ on [a, b] only if (1) ${}_{x}\Pi^{y}(1 + G)$ exists for $a \le x < y \le b$, and (2) if $\epsilon > 0$, then there exists a subdivision D of [a, b] such that, if $\{x_i\}_{i=0}^n$ is a refinement of D and $0 \le p < q \le n$, then

$$\left| x_{p} \prod_{i=p+1}^{x_{q}} (1+G) - \prod_{i=p+1}^{q} (1+G_{i}) \right| < \epsilon.$$

We now state the main results of this paper.

Theorem 1. If F and G are functions from $R \times R$ to N, F is in OP° and $S_1 \cap S_2$ on [a, b] and G is in OB° and S_2 on [a, b], then any two of the following statements imply the other:

- (1) $F + G \in OM^*$ on [a, b],
- (2) $F \in OM^*$ on [a, b], and
- (3) $G \in OM^*$ on [a, b].

Theorem 2. If F and G are functions from $R \times R$ to N, F is in OP° and $S_1 \cap S_2$ on [a, b] and G is in OB° and S_2 on [a, b], then any two of the following statements imply the other:

- (1) $F + G \in OM^{\circ}$ on [a, b],
- (2) $F \in OM^{\circ}$ on [a, b], and
- (3) $G \in OM^{\circ}$ on [a, b].

Theorems 1 and 2 are not the same. A function can belong to OM^* on [a, b] without belonging to OM° on [a, b]. For example, if $G \in OB^\circ$ on [a, b] and $_x\Pi^y(1+G)$ exists for $a \le x < y \le b$, then $G \in OM^*$ on [a, b] [7, Theorem 1]; but, it is possible to construct a function G such that $G \in OB^\circ$ on [a, b], $_x\Pi^y(1+G)$ exists for $a \le x < y \le b$ and $G \notin OM^\circ$ on [a, b] [4, pp. 153–154]. However, if G is in OM° and OP° on [a, b], then $G \in OM^*$ on [a, b].

Theorem 2 is proved for functions from $R \times R$ to R in a previous paper by the author [6, Theorem 1, p. 101]. However, that proof relies heavily on the commutativity of R and thus is not the same as the proof presented in this paper. In this presentation, the lack of commutativity is handled by using a series representation for products.

The classes OM^* and OM° are not as restricted as may initially appear. As noted before, if $G \in OB^\circ$ on [a, b] and ${}_x\Pi^y(1+G)$ exists for $a \le x < y \le b$, then $G \in OM^*$ on [a, b] [7, Theorem 1]. For another example, suppose

$$F(x, y) = \begin{bmatrix} 0 & 0 \\ h(y) - h(x) & 0 \end{bmatrix}$$

for $a \le x < y \le b$, where h is a quasi-continuous function from R to N. Then, with a suitable norm, F is in OP° , OM° and $S_1 \cap S_2$ on [a, b]. Thus, F

satisfies the hypotheses of Theorems 1 and 2; however, it does not necessarially follow that $F \in OB^{\circ}$ on [a, b]. With Theorems 1 and 2 and functions such as F, it is possible to construct many functions in OM^* and OM° . A fundamental correspondence exists between sum and product integrals. In particular, if $G \in OB^{\circ}$ on [a, b], then $\int_a^b G$ exists if and only if $_x\Pi^y(1+G)$ exists for $a \le x < y \le b$ [7, Theorem 4], and $G \in OA^{\circ}$ on [a, b] if and only if $G \in OM^{\circ}$ on [a, b] [2, Theorem 3.4, p. 301]. If G is a function from $G \in OA^{\circ}$ on $G \in OA^{$

We now establish Theorem 1. Several lemmas are needed.

Lemma 1. If H and G are functions from $R \times R$ to N, $H \in OL^{\circ}$ on [a, b], $G \in OB^{\circ}$ on [a, b] and either $\int_a^b G$ exists or $\prod^y (1 + G)$ exists for $a \le x < y \le b$, then $\int_a^b HG$ and $\int_a^b GH$ exist and $\prod^y (1 + HG)$ and $\prod^y (1 + GH)$ exist for $a \le x < y \le b$ [7, Theorem 5].

Lemma 2. If f is a function from R to R such that (LR) $\int_a^b (-df) f^{n-i} f^i$ exists for $i = 0, 1, \ldots, n$, then

$$\sum_{i=0}^{n} (LR) \int_{a}^{b} (-df) f^{n-i} f^{i} = f^{n+1}(a) - f^{n+1}(b).$$

Proof. This result follows by applying the identity

$$(r-s)\sum_{i=0}^{n}r^{n-i}s^{i}=r^{n+1}-s^{n+1}$$

to the approximating sums of the integrals involved.

Lemma 3. If $\{F_i\}_{i=m}^n$ and $\{G_i\}_{i=m}^n$ are sequences of elements of N, then

$$\prod_{i=m}^{n} (1 + F_i + G_i) = \sum_{i=0}^{n+1-m} S_{imn},$$

where

$$S_{0pn} = \begin{cases} \prod_{j=p}^{n} (1+F_{j}) & \text{if } 0 n, \end{cases}$$

and

$$S_{ipn} = \begin{cases} \sum_{j=p}^{n} [\prod_{k=p}^{j-1} (1+F_k)] G_j S_{i-1,j+1,n} & \text{if } 0 n \end{cases}$$

for i = 1, 2, ...

Proof. This lemma can be established by induction.

Lemma 4. If F and G are functions from $R \times R$ to N, $F \in OP^o$ on [a, b] and $G \in OB^o$ on [a, b], then there exist a subdivision D of [a, b], a number B and a positive nondecreasing function g defined on [a, b] such that, if $\{x_i\}_{i=0}^n$ is a refinement of D, j is a nonnegative integer and 0 , then

(†)
$$|S_{jpq}| \le B^{j+1} [g(x_q) - g(x_{p-1})]^{j/j!},$$

where Siba is defined in Lemma 3.

Proof. Since $F \in OP^{\circ}$ on [a, b] and $G \in OB^{\circ}$ on [a, b], there exist a subdivision D of [a, b] and a number B such that, if $\{x_i\}_{i=0}^n$ is a refinement of D, then

- (1) $|\prod_{i=p+1}^{q} (1+F_i)| < B$ for $0 \le p < q \le n$, and
- (2) $\sum_{i=1}^{n} |G_i| < B$.

Let g be the function defined on [a, b] such that

- (1) g(a) = 1, and
- (2) $g(x) = 1 + \text{lub}\{\sum_{j} |G|: j \text{ a refinement of } \{x_i\}_{i=0}^{p-1} \cup \{x\}\}, \text{ where } 0$

Thus, g is a positive nondecreasing function.

We use induction to establish the desired inequality. If $\{x_i\}_{i=0}^n$ is a refinement of D and 0 , then

$$|S_{0pq}| = \left| \prod_{i=p}^{q} (1+F_i) \right| \leq B.$$

Thus, the inequality is true for j = 0.

Suppose the inequality holds for the nonnegative integer j. That is, if $\{x_i\}_{i=0}^n$ is a refinement of D and 0 , then (†) holds.

We now establish that the inequality also holds for j+1. Suppose $\{x_i\}_{i=0}^n$ is a refinement of D and 0 . To simplify notation in the following manipulations, let

$$f(v) = g(x_q) - g(v)$$

for $x_p \le v \le x_q$. Now,

$$\begin{split} |S_{j+1,p,q}| &= \left| \sum_{i=p}^{q} \prod_{k=p}^{i-1} (1+F_k) \right| G_i S_{j,i+1,q} \\ &\leq B \sum_{i=p}^{q} |G_i| |S_{j,i+1,q}| \\ &\leq B \sum_{i=p}^{q} \{g(x_i) - g(x_{i-1})\} \{B^{j+1}[g(x_q) - g(x_i)]^{j/j!} \} \\ &\leq B \left[(R) \int_{x_{p-1}}^{x_q} dg \{B^{j+1}[g(x_q) - g(v)]^{j/j!} \} \right] \\ &= \left[B^{j+2/j!} \right] \left[(R) \int_{x_{p-1}}^{x_q} (-df) f^j \right] \\ &\leq \left[B^{j+2/(j+1)!} \right] \sum_{k=0}^{j} (LR) \int_{x_{p-1}}^{x_q} (-df) f^{j-k} f^k \\ &= \left[B^{j+2/(j+1)!} \right] [f^{j+1}(x_{p-1}) - f^{j+1}(x_q)] \qquad \text{(Lemma 2)} \\ &= B^{j+2} [g(x_q) - g(x_{p-1})]^{j+1/(j+1)!}. \end{split}$$

Thus, the inequality holds for j + 1. Hence, the inequality is valid for $j = 0, 1, 2, \ldots$. Therefore, Lemma 4 is established.

Lemma 5. If F and G are functions from $R \times R$ to N, $F \in OP^{\circ}$ on [a, b] and $G \in OB^{\circ}$ on [a, b], then $F + G \in OP^{\circ}$ on [a, b].

Proof. This lemma follows as a corollary to Lemmas 3 and 4.

Lemma 5 is established in a previous paper by the author for functions from $R \times R$ to R [5, Theorem 1 (1 \rightarrow 2), p. 378]. However, the proof presented there is different from the proof employed in this paper.

Lemma 6. If $\{F_i\}_{i=m}^n$ and $\{G_i\}_{i=m}^n$ are sequences of elements of N, then

$$\prod_{i=m}^{n} (1 + F_i + G_i) = \prod_{i=m}^{n} (1 + F_i) + \sum_{i=m}^{n} \prod_{j=m}^{i-1} (1 + F_j) G_i \left[\prod_{j=i+1}^{n} (1 + F_j + G_j) \right].$$

Proof. This lemma can be established by induction.

Lemma 7. If G is a function from $R \times R$ to N and $G \in OB^{\circ}$ on [a, b], then the following statements are equivalent:

- (1) $\int_a^b G$ exists, and
- (2) $_{x}\Pi^{y}(1+G)$ exists for $a \le x < y \le b$.

Further, if $G \in OB^{\circ}$ on [a, b] and (1) or (2) is true, then $G \in OM^{*}$ on [a, b].

Proof. If $G \in OB^{\circ}$ on [a, b] and $_{x}\Pi^{y}(1+G)$ exists for $a \le x < y \le b$, then $G \in OM^{*}$ on [a, b] [7, Theorem 1]. Also, if $G \in OB^{\circ}$ on [a, b], then $\int_{a}^{b} G$ exists if and only if $_{x}\Pi^{y}(1+G)$ exists for $a \le x < y \le b$ [7, Theorem 4]. Thus, the lemma follows.

We now establish Theorem 1.

Proof of Theorem 1 [(2), (3) \rightarrow (1)]. We initially establish that $\sum_{i=0}^{\infty} P_i(x, y)$ converges uniformly and absolutely for $a \le x < y \le b$, where

$$P_0(x, y) = \prod^y (1 + F)$$

and

$$P_{i}(x, y) = (LR) \int_{x}^{y} \prod_{x} (1 + F)GP_{i-1}(v, y)$$

for $a \le x < y \le b$ and $i = 1, 2, \ldots$. The existence of these integrals follows by applying Lemma 1.

From Lemma 4, there exist a subdivision D_1 of [a, b], a number B and a positive nondecreasing function g defined on [a, b] such that, if $\{x_i\}_{i=0}^n$ is a refinement of D_1 , i is a nonnegative integer and 0 , then

$$|S_{ipq}| \le B^{i+1}[g(x_q) - g(x_{p-1})]^{i/i!}$$

and

$$|-S_{ipg}| \le B^{i+1}[g(x_g) - g(x_{p-1})]^{i/i!},$$

where S_{iba} is defined as in Lemma 3.

It follows from the result stated in the preceding paragraph that

$$|P_i(x, y)| \le B^{i+1}[g(y) - g(x)]^{i/i}!$$

for $a \le x < y \le b$ and $i = 0, 1, 2, \ldots$. Therefore, $\sum_{i=0}^{\infty} P_i$ converges uniformly and absolutely on [a, b].

Suppose $a \le x < y \le b$. We now establish that $_x\Pi^y(1+F+G)$ exists and is $\sum_{i=0}^{\infty} P_i(x, y)$. Let $\epsilon > 0$.

There exists a positive integer N such that

$$\sum_{i=N+1}^{\infty} B^{i+1}[g(b) - g(a)]^{i}/i! < \epsilon/3.$$

Further, from the existence properties of the integrals involved, there exists a subdivision D_2 of [a, b] such that, if $\{x_i\}_{i=0}^n$ is a refinement of D_2 and $0 \le p < q \le n$, then

$$\left| \sum_{i=0}^{N} P_{i}(x_{p}, x_{q}) - \sum_{i=0}^{N} S_{i,p+1,q} \right| < \frac{\epsilon}{3}.$$

Let D denote a subdivision of [x, y] which refines the intersection of [x, y] and $D_1 \cup D_2$ and has at least N+1 elements. Suppose $\{x_i\}_{i=0}^n$ is a refinement of D. Now,

$$\begin{split} \left| \sum_{i=0}^{\infty} P_{i}(x, y) - \prod_{i=1}^{n} (1 + F_{i} + G_{i}) \right| \\ &= \left| \sum_{i=0}^{\infty} P_{i}(x, y) - \sum_{i=0}^{n} S_{i1n} \right| \\ &\leq \left| \sum_{i=0}^{N} P_{i}(x, y) - \sum_{i=0}^{N} S_{i1n} \right| + \left| \sum_{i=N+1}^{\infty} P_{i}(x, y) \right| + \left| -\sum_{i=N+1}^{n} S_{i1n} \right| \\ &\leq \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon. \end{split}$$
(Lemma 3)

Hence, $_x\Pi^y(1+F+G)$ exists and is $\sum_{i=0}^{\infty} P_i(x, y)$.

We now establish that $F + G \in OM^*$ on [a, b]. Since $_x\Pi^y(1 + F + G)$ exists for $a \le x < y \le b$, it is only necessary to establish the approximation part of the definition. Let $\epsilon > 0$. Further, let D_1 , D_2 and N be defined as before.

Since F is in OM^* , OP° and S_2 on [a, b] and G is in OB° and S_2 on [a, b], there exists a subdivision D_3 of [a, b] such that, if $\{x_i\}_{i=0}^n$ is a refinement of [a, b], $0 \le p < q \le n$ and $q - p \le N$, then

$$\left| \prod_{x \in P} x^{q} (1 + F + G) - \prod_{i=p+1}^{q} (1 + F_{i} + G_{i}) \right| < \epsilon.$$

Let D denote the subdivision $D_1 \cup D_2 \cup D_3$ of [a, b]. Suppose $\{x_i\}_{i=0}^n$ is a refinement of D and $0 \le p < q \le n$. If $q - p \le N$, then the desired inequality follows immediately from the definition of D_3 . If $q - p \ge N$, then

$$\begin{vmatrix} \prod_{x_p}^{x_q} (1 + F + G) - \prod_{i=p+1}^{q} (1 + F_i + G_i) \end{vmatrix}$$

$$= \begin{vmatrix} \sum_{i=0}^{\infty} P_i(x_p, x_q) - \sum_{i=0}^{p-q} S_{i,p+1,q} \end{vmatrix}$$

$$\leq \begin{vmatrix} \sum_{i=0}^{N} P_i(x_p, x_q) - \sum_{i=0}^{N} S_{i,p+1,q} \end{vmatrix}$$

$$+ \begin{vmatrix} \sum_{i=N+1}^{\infty} P_i(x_p, x_q) \end{vmatrix} + \begin{vmatrix} \sum_{i=N+1}^{p-q} S_{i,p+1,q} \end{vmatrix}$$

$$\leq \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon.$$
(Lemma 3)

Therefore, $F + G \in OM^*$ on [a, b]. Thus, (2) and (3) imply (1).

Proof of Theorem 1 [(1), (2) \rightarrow (3)]. Since F and F + G are in OM^* and OP° on [a, b], the existence of

$$(LR) \int_{x}^{y} \prod^{u} (1+F)G \prod^{v} (1+F+G)$$

for $a \le x < y \le b$ can be established by employing Lemma 6.

Since F and F + G are in S_1 on [a, b], there exists a subdivision $\{x_i\}_{i=0}^n$ of [a, b] such that, if $1 \le i \le n$ and $x_{i-1} < x < y < x_i$, then

$$\left|\prod_{x} \prod^{y} (1+F)\right| < \frac{1}{2}$$
 and $\left|\prod_{x} \prod^{y} (1+F+G)\right| < \frac{1}{2}$.

Suppose $1 \le i \le n$ and $x_{i-1} < x < y < x_i$. Let J and K represent interval functions such that, if $x \le u < v \le y$, then

$$J(u, v) = \prod_{x} u(1+F)$$
 and $K(u, v) = \prod_{y} v(1+F+G)$.

Since J and K are in OL° on [a, b], it follows that J^{-1} and K^{-1} are also in OL° on [a, b]. Thus, from Lemma 1 and the existence of the integral in the preceding paragraph, we have that $\int_{a}^{y} G$ exists.

We have now established that, if $1 \le i \le n$ and $x_{i-1} < x < y < x_i$, then $\int_x^y G$ exists. From this and the fact that G is in OB° and S_2 on [a, b], it follows that $\int_a^b G$ exists. Hence, $G \in OM^*$ on [a, b] by Lemma 7. Thus, (1) and (2) imply (3).

Proof of Theorem 1 [(1), (3) \rightarrow (2)]. It follows from Lemma 5 that $F + G \in OP^{\circ}$ on [a, b]. Further, $-G \in OM^{*}$ by Lemma 7. We have already established that (2) and (3) imply (1). Now, since $F + G - G \equiv F$, it follows that $F \in OM^{*}$ on [a, b]. Thus, (1) and (3) imply (2).

The proof of Theorem 1 is now complete. We next establish Theorem 2. One additional lemma is needed.

Lemma 8. If G is a function from $R \times R$ to N and $G \in OB^{\circ}$ on [a, b], then the following statements are equivalent:

- (1) $G \in OA^{\circ}$ on [a, b], and
- (2) $G \in OM^{\circ}$ on [a, b] [2, Theorem 3.4, p. 301].

Proof of Theorem 2 [(2), (3) \rightarrow (1)]. Since F and G are in OP° and OM° on [a, b], F and G are also in OM^* on [a, b]. Hence, it follows from Theorem 1 [(2), (3) \rightarrow (1)] that $_x\Pi^y(1+F+G)$ exists for $a \le x < y \le b$. Thus, it is only necessary to show that $\int_a^b |1+F+G-\Pi(1+F+G)|$ exists and is zero in order to establish that $F+G\in OM^\circ$ on [a, b]. Let $\epsilon>0$.

Since $F \in OM^{\circ}$ on [a, b], there exists a subdivision D_1 of [a, b] such that, if $\{x_i\}_{i=0}^n$ is a refinement of D_1 , then

$$\sum_{i=1}^{n} \left| 1 + F_i - \prod_{x_{i-1}}^{x_i} (1+F) \right| < \frac{\epsilon}{2}.$$

We know that F is in OP° and OM^{*} on [a, b]. Further, $F + G \in OP^{\circ}$ on [a, b] by Lemma 5 and $F + G \in OM^{*}$ on [a, b] by Theorem 1 $[(2), (3) \rightarrow (1)]$. Now, since $G \in OB^{\circ}$ on [a, b], it follows by using Lemma 6 that

$$(LR) \int_{x}^{y} \prod^{u} (1+F)G_{u} \prod^{y} (1+F+G)$$

exists and is

$$\prod_{y}^{y}(1+F+G)-\prod_{y}^{y}(1+F)$$

for a < x < y < b.

Since F and F+G are in S_1 and OM^* on [a, b], for each positive number β there exists a subdivision $\{x_i\}_{i=0}^n$ of [a, b] such that, if $1 \le i \le n$ and $x_{i-1} < x < y < x_i$, then

$$\left|1-\prod_{x}^{y}(1+F)\right|<\beta$$
 and $\left|1-\prod_{x}^{y}(1+F+G)\right|<\beta$.

By Lemma 8, $G \in OA^{\circ}$ on [a, b]. Further, F and F + G are in OP° on [a, b] and $G \in OB^{\circ}$ on [a, b]. From these facts, it follows that

$$\int_{a}^{b} \left| G(x, y) - (LR) \int_{x}^{y} \prod^{u} (1 + F) G \prod^{v} (1 + F + G) \right|$$

exists and is zero. Thus, there exists a subdivision D_2 of [a, b] such that, if $\{x_i\}_{i=0}^n$ is a refinement of D_2 , then

$$\sum_{i=1}^{n} \left| G_i - (LR) \int_{x_{i-1}}^{x_i} \prod_{x_{i-1}}^{u} (1+F) G_v \prod^{x_i} (1+F+G) \right| < \frac{4}{2}.$$

Let D denote the subdivision $D_1 \cup D_2$ of [a, b]. Suppose $\{x_i\}_{i=0}^n$ is a refinement of D. Now,

$$\begin{split} \sum_{i=1}^{n} \left| 1 + F_{i} + G_{i} - \prod_{x_{i-1}}^{x_{i}} (1 + F + G) \right| \\ &= \sum_{i=1}^{n} \left| 1 + F_{i} + G_{i} - \left[\prod_{x_{i-1}}^{x_{i}} (1 + F) + (LR) \int_{x_{i-1}}^{x_{i}} \prod_{x_{i-1}}^{u} (1 + F) G_{u} \prod_{x_{i}}^{x_{i}} (1 + F + G) \right] \right| \\ &\leq \sum_{i=1}^{n} \left| 1 + F_{i} - \prod_{x_{i-1}}^{x_{i}} (1 + F) \right| \\ &+ \sum_{i=1}^{n} \left| G_{i} - (LR) \int_{x_{i-1}}^{x_{i}} \prod_{x_{i-1}}^{u} (1 + F) G_{u} \prod_{x_{i}}^{x_{i}} (1 + F + G) \right| \\ &< \epsilon/2 + \epsilon/2 = \epsilon. \end{split}$$

Therefore, $F + G \in OM^{\circ}$ on [a, b]. Thus, (2) and (3) imply (1).

Proof of Theorem 2 [(1), (2) \rightarrow (3)]. The proof of Theorem 2 [(1), (2) \rightarrow (3)] is similar to the proof of Theorem 1 [(1), (2) \rightarrow (3)]. The only difference is that it is necessary to use Lemma 8 rather than Lemma 7. Thus, (1) and (2) imply (3).

Proof of Theorem 2 [(1), (3) \rightarrow (2)]. The proof of Theorem 2 [(1), (3) \rightarrow (2)] is similar to the proof of Theorem 1 [(1), (3) \rightarrow (2)]. As before, the only difference is that it is necessary to use Lemma 8 rather than Lemma 7. Thus, (1) and (3) imply (2).

The proof of Theorem 2 is now complete.

BIBLIOGRAPHY

- 1. W. D. L. Appling, Interval functions and real Hilbert spaces, Rend. Circ. Mat. Palermo (2) 11 (1962), 154-156. MR 27 #4040.
- 2. B. W. Helton, Integral equations and product integrals, Pacific J. Math. 16 (1966), 297-322. MR 32 #6167.
- 3. ——, A product integral representation for a Gronwall inequality, Proc. Amer. Math. Soc. 23 (1969), 493-500. MR 40 #1562.
- 4. J. C. Helton, An existence theorem for sum and product integrals, Proc. Amer. Math. Soc. 39 (1973), 149-154.
- 5. ——, Bounds for products of interval functions, Pacific J. Math. 49 (1973), 377-389.
- 6. ____, Mutual existence of product integrals, Proc. Amer. Math. Soc. 42 (1974), 96-103.
- 7. ——, Mutual existence of sum and product integrals, Pacific J. Math. 56 (1975).
- 8. A. Kolmogoroff, Untersuchungen über den Integralbegriff, Math. Ann. 103 (1930), 654-696.
- 9. J. S. MacNerney, Integral equations and semigroups, Illinois J. Math. 7 (1963), 148-173. MR 26 #1726.
- 10. P. R. Masani, Multiplicative Riemann integration in normed rings, Trans. Amer. Math. Soc. 61 (1947), 147-192. MR 8, 321.

DEPARTMENT OF MATHEMATICS, ARIZONA STATE UNIVERSITY, TEMPE, ARIZONA 85281